If it's not what You are looking for type in the equation solver your own equation and let us solve it.
108x^2-99x+3=0
a = 108; b = -99; c = +3;
Δ = b2-4ac
Δ = -992-4·108·3
Δ = 8505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8505}=\sqrt{81*105}=\sqrt{81}*\sqrt{105}=9\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-99)-9\sqrt{105}}{2*108}=\frac{99-9\sqrt{105}}{216} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-99)+9\sqrt{105}}{2*108}=\frac{99+9\sqrt{105}}{216} $
| 3(10)=10+5x | | 2×25-3x=38 | | 16=n+6= | | v+6v=14 | | 3x*8=15 | | 32/4x=-20 | | 3x-6=36. | | 28/7x=60 | | -2x+100=6x+80 | | 64/5x=-14 | | 9x^2+9x+9=9 | | 5x-3=5x+12 | | 1.03=1+y/1.05 | | -4x+80=-12x+80 | | -m/5+3=-4 | | 4X-15=67-9x | | (9x-18)/(2x+9)=0 | | 2x+8=2(x+4)+4 | | 12u+8u=16 | | (x-5)(x+5)=75 | | 12x=4x^2-7 | | -7(x+9)=-9x-45 | | -8x+44=-2(x-7) | | 4(w-9)=9w-26 | | -9x+2=3x-16 | | 8n-12=6n | | 6x-11=-2x+19 | | 6x-11=2x+19 | | (x-9)(x+3)=13 | | 5X+8=4x-24 | | 7/3=2/x | | -6p+9=-9+9p |